AUTOMATED REASONING, 2013/2014 1B: EXAM (OPEN BOOK), JAN 24, 2014

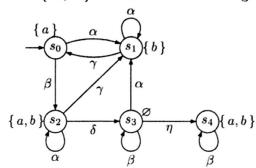
[(P1) Classify temporal properties] Consider the set AP of atomic propositions defined by $AP = \{x = 0, x > 1\}$, and a nonterminating program P that uses the variable x. Formulate the following properties in LTL:

- (1) initially x is equal to zero
- (2) initially x differs from zero
- (3) initially x is equal to zero, but at some point x exceeds one
- (4) x exceeds one only finitely many times
- (5) x exceeds one infinitely often
- (6) the value of x alternates between zero and non-zero

Determine which of these properties are safety properties, and justify your answers.

[18%]

[(P2) LTL checking on a Kripke structure] Consider the following system model M over the set of atomic propositions $\{a,b\}$. Note that only the positive form of the propositions is explicitly written: the state label \varnothing means $\{\neg a, \neg b\}$. The transitions are also given some labels.



For each LTL formula f below, decide whether for all computation paths, f holds for M. When it does not, write the shortest counterexample π in M on which $\pi \not\models f$.

- (1) $Ga \vee Gb$
- (2) $\mathbf{FG}(a \vee b)$
- (3) **GF** $(a \lor b)$
- (4) aUb
- (5) G(aUb)
- (6) $\mathbf{F}(\neg a \wedge \neg b)$

[18%]

[(P3) Operator minimality] In temporal logics, the set of logical operators and temporal operators is not minimal: formulas using some operators (say, Gf) can be equivalently expressed as other formulas using other operators (say, $\neg F \neg f$).

Determine the smallest subset of operators which is sufficient to express any temporal formula. (Ignore the Release operator \mathbf{R} , but do consider the path quantifiers \mathbf{A} and \mathbf{E} .)

Justify that this subset is both sufficient, and minimal. Is the solution unique?

[16%]

- [(P4) Complexity issues] (a) Take the automata-based static model checking algorithm built on a depth-first search. Say that this algorithm is run to check whether a given system modelled as a Kripke structure M violates a given temporal property f. State the (worst-case) time complexity of the model checking algorithm in terms of the size of M (e.g., the number of states in the state space) and that of f (i.e., the number of atomic propositions used in the formula).
- (b) Also take the automata-based model runtime model checking algorithm. State the (worst-case) runtime complexity of the model checking algorithm, as above. Take two cases: that in which the monitor is deterministic, and that in which it is nondeterministic.

You do not need to include a detailed calculation, but should reach clear conclusions with regard to complexity classes (e.g. the algorithm is linear in the number of states in [..], exponential in the size of [..]). Justify any statement you make.

[16%]

- [(P5) Equivalences of LTL formulas] All LTL specifications below describe a nonterminating system. f and g are any LTL formulas. Which of the following formula equivalences are correct? Either prove each equivalence or provide a counterexample. (If you need to use other known LTL equivalences in a proof, prove those also; otherwise, simply use the LTL induction rules.)
 - (1) $\mathbf{FG}f \Leftrightarrow \mathbf{GF}f$
 - (2) $(\mathbf{FG}f) \wedge (\mathbf{FG}g) \Leftrightarrow \mathbf{F}(\mathbf{G}f \wedge \mathbf{G}g)$
 - (3) $(fUg)Ug \Leftrightarrow fUg$

[18%]

[(P6) Liveness as ω -runs] The LTL induction rules tell whether an execution path π satisfies a temporal formula f, i.e. $\pi \models f$. We also linked execution paths to the concept of ω -runs; thus, you may also write $w \models f$ to state that an (in)finite word w over a set of atomic propositions AP satisfies f. We now define a liveness property more formally than before:

Definition (liveness). A temporal property f is called a *liveness* property if and only if for any finite word $w \in (2^{AP})^*$ there exists an infinite word $v \in (2^{AP})^{\omega}$ so that $w \cdot v \models f$, i.e., w concatenated with v satisfies f.

Intuitively, this states facts you already know about liveness properties: that it is impossible to tell whether a liveness property holds by only looking at a finite run; also, that all counterexamples to liveness properties are infinite.

Take any two temporal liveness properties f_1 and f_2 . Using this new definition, prove or disprove that:

- $f_1 \vee f_2$ is also a liveness property;
- $f_1 \wedge f_2$ is also a liveness property.

[14%]